Exercise 3

(a) Find y^{\prime} by implicit differentiation.
(b) Solve the equation explicitly for y and differentiate to get y^{\prime} in terms of x.
(c) Check that your solutions to parts (a) and (b) are consistent by substituting the expression for y into your solution for part (a).

$$
\sqrt{x}+\sqrt{y}=1
$$

Solution

Part (a)
Differentiate both sides with respect to x.

$$
\begin{gathered}
\frac{d}{d x}(\sqrt{x}+\sqrt{y})=\frac{d}{d x}(1) \\
\frac{d}{d x}(\sqrt{x})+\frac{d}{d x}(\sqrt{y})=0 \\
\frac{1}{2} x^{-1 / 2}+\frac{1}{2} y^{-1 / 2} \cdot \frac{d}{d x}(y)=0 \\
\frac{1}{2 \sqrt{x}}+\frac{y^{\prime}}{2 \sqrt{y}}=0
\end{gathered}
$$

Solve for y^{\prime}.

$$
y^{\prime}=-\sqrt{\frac{y}{x}}
$$

Part (b)
Solve for y first.

$$
\begin{gathered}
\sqrt{y}=1-\sqrt{x} \\
y=(1-\sqrt{x})^{2}=1-2 \sqrt{x}+x
\end{gathered}
$$

Then take the derivative.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}(1-2 \sqrt{x}+x) \\
& =-2 \cdot \frac{1}{2} x^{-1 / 2}+1 \\
& =1-\frac{1}{\sqrt{x}}
\end{aligned}
$$

Plug the formula for \sqrt{y} into the result of part (a) to see if the same answer is obtained.

$$
y^{\prime}=-\frac{\sqrt{y}}{\sqrt{x}}=-\frac{1-\sqrt{x}}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}
$$

